The dual bade theorem in locally convex spaces and reflexivity of a closed unital subalgebra
نویسندگان
چکیده
منابع مشابه
On the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملon the dual of certain locally convex function spaces
in this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $x$, where $x$ is a $c$-distinguished topological space. then, we show that their dual spaces can be identified in a natural way with certain spaces of radon measures.
متن کاملRiesz Type Theorem in Locally Convex Spaces
The present paper is concerned with some representatons of linear mappings of continuous functions into locally convex vector spaces, namely Theorem. If X is a complete Hausdorff locally convex vector space, then a general form of weakly compact mapping T : C[a, b] → X is of the form Tg = ∫ b a g(t)dx(t), where the function x(·) : [a, b] → X has a weakly compact semivariation on [a, b]. This th...
متن کاملB -AND B - COMPLETENESS IN LOCALLY CONVEX ALGEBRAS AND THE E x THEOREM
Let E be a B-complete (B -complete) locally convex algebra and $ the topological direct sum of countably many copies of the scalar field with a jointly continuous algebra multiplication. It has been shown that E is also B-complete (B -complete) for componentwise multiplication on E . B-and Br-completeness of E , the unitization of E, and also of E x for other multiplications on E ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 1999
ISSN: 0716-0917,0717-6279
DOI: 10.22199/s07160917.1999.0001.00006